基于网络药理学的砂仁镇痛作用机制研究

任娟, 张娜, 王敏, 廖嘉宝, 张丽菊, 汪泽, 崔国祯, 孙智勇

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (9) : 723-730.

PDF(3259 KB)
PDF(3259 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (9) : 723-730. DOI: 10.11669/cpj.2021.09.006
论著

基于网络药理学的砂仁镇痛作用机制研究

  • 任娟1, 张娜1, 王敏1, 廖嘉宝2, 张丽菊1*, 汪泽1, 崔国祯1, 孙智勇1*
作者信息 +

Exploration of Mechanism of the Analgesic Effect of Amomi Fructus Based on Network Pharmacology

  • REN Juan1, ZHANG Na1, WANG Min1, LIAO Jia-bao2, ZHANG Li-ju1*, WANG Ze1, CUI Guo-zhen1, SUN Zhi-yong1*
Author information +
文章历史 +

摘要

目的 运用网络药理学的方法研究中药砂仁的药理作用机制。方法 通过体外实验验证中药砂仁的镇痛药效。进一步通过系统药理学平台及大量文献检索,建立中药砂仁的潜在活性成分、作用靶点及分子通路。最后通过分子操作环境(molecular operating environment)软件进行分子对接验证。结果 体外实验发现,砂仁水提物在质量浓度为0~100 μg·mL-1的范围内对环氧化酶-2活性产生抑制作用,并测得其IC50约为19.20 μg·mL-1,说明砂仁水提物具有镇痛药理作用。TCMSP网络药理学研究平台结合文献调研共发现18个潜在活性成分,60个潜在有效靶点,涉及神经活性配体-受体相互作用等信号通路。结论 本研究在体外水平验证了砂仁水提物的镇痛药理作用,并且从网络药理学层面探讨了其镇痛作用机制,发现砂仁可能是通过γ-氨基丁酸受体、环氧化酶、电压门控Na+通道蛋白等途径发挥其镇痛作用。本研究为砂仁镇痛药理机制研究提供新的观点,同时也为临床用药提供理论依据。

Abstract

OBJECTIVE To explore the pharmacological mechanism of traditional Chinese medicine (TCM) Amomi Fructus by network pharmacology. METHODS The analgesic effect of Amomi Fructus was firstly investigated by in vitro experiment. Then, a compound database of Amomi Fructus was established by analyzing related literatures and network pharmacology method. At last, molecular docking techniques were performed to evaluate the interaction of potential active ingredients of Amomi Fructus with predicted protein targets. RESULTS It was found that the active constituents of Amomi Fructus had inhibitory effects on cyclooxygenase-2 activity in the range of 0-100 μg·mL-1, and the IC50 was measured to be 19.20 μg·mL-1, indicating its potential analgesic effect. By TCMSP database and CNKI database analysis, a total number of 18 potential active ingredients and 60 predicted protein targets were obtained. CONCLUSION The research confirms the analgesic effect of Amomi Fructus by in vitro experiment. It is discovered that the analgesic effect of Amomi Fructus is possibly involved with the interaction with gamma-aminobutyric-acid receptor, prostaglandin G/H synthase, and sodium channel proteins. This study provides a new perspective for the study of the analgesic mechanism of Amomi Fructus.

关键词

砂仁 / 靶点预测 / 网络药理学 / 活性成分 / 分子对接

Key words

Amomi Fructus / target prediction / network pharmacology / active ingredient / molecular docking

引用本文

导出引用
任娟, 张娜, 王敏, 廖嘉宝, 张丽菊, 汪泽, 崔国祯, 孙智勇. 基于网络药理学的砂仁镇痛作用机制研究[J]. 中国药学杂志, 2021, 56(9): 723-730 https://doi.org/10.11669/cpj.2021.09.006
REN Juan, ZHANG Na, WANG Min, LIAO Jia-bao, ZHANG Li-ju, WANG Ze, CUI Guo-zhen, SUN Zhi-yong. Exploration of Mechanism of the Analgesic Effect of Amomi Fructus Based on Network Pharmacology[J]. Chinese Pharmaceutical Journal, 2021, 56(9): 723-730 https://doi.org/10.11669/cpj.2021.09.006
中图分类号: R965   

参考文献

[1] Ch. P (2015). Vol Ⅰ(中国药典2015年版. 一部) [S]. 2015: 253.
[2] WANG X, QIN Y, DAI Z. Research progress on Amomum villosum L. [J]. Chin J Ethnomed Ethnopharm (中国民族民间医药), 2016, 25(15): 37-38.
[3] ZHANG X, ZHANG F, YANG Z, et al. A study on the anti-inflammation and analgesic effects of nature of anti-rheumatism traditional Chinese medicine [J]. Chin Arch Tradit Chin Med (中华中医药学刊), 2008, 26(11): 2386-2396.
[4] ZHAO J, DONG Z, ZHU Y, et al. Anti-inflammation, analgesic and anti-diarrhea effect of volatile oil from A. longiligulare T. L. Wu [J]. Chin Tradit Pat Med (中成药), 2009, 31(7): 1010-1014.
[5] WU X, XIAO F, ZHANG Z, et al. Research on the analgesic effect and mechanism of bornyl acetate in volatile oil from Amomum villosum [J]. J Chin Med Mater (中药材), 2005, 28(6): 505-507.
[6] PAN H, HUANG F, WANG P, et al. Identification of Amomum villosum, Amomum villosum var. xanthioides and Amomum longiligulare on ITS-1 sequence [J]. J Chin Med Mater (中药材), 2001, 24(7): 481-483.
[7] LI S, ZENG B, YE Q, et al. Correlation analysis between GC-MS fingerprint of essential oil of Amomi Fructus and anti-inflammatory activity [J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2015, 21(9): 133-136.
[8] LI M, YE Q, AO H. Relationship between the GC-MS fingerprints of essential oil from Amomi Fructus and its analgesia effect [J]. Chin Tradit Pat Med (中成药), 2016, 38(2): 346-350.
[9] ZHANG W N, LI A P, LI K, et al. Progress on pharmacodynamic material basic of traditional Chinese medicine [J]. Chin Pharm J (中国药学杂志), 2018, 53(10): 761-764.
[10] SU Z, WANG C L, SUN J. Experimental study of Fufanglongmainingdiwan anti-thrombosis and improving micro-circulation [J]. J Shaanxi Coll Tradit Chin Med (陕西中医学院学报), 2010, 33(2): 55-57.
[11] ENGIN H B, GURSOR A, NUSSINOV R, et al. Network-based strategies can help mono-and poly-pharmacology drug discovery: a systems biology view [J]. Curr Pharm Des, 2014, 20(8): 1201-1207.
[12] WANG J, CUI H, WANG R, et al. A systems pharmacology-oriented discovery of a new therapeutic use of the TCM formula Liuweiwuling for liver failure [J]. Sci Rep, 2018, 8(4): 5645.
[13] LI S. Network target: a starting point for traditional Chinese medical network pharmacology [J]. China J Chin Mater Med (中国中药杂志), 2011, 36(15): 2017-2020.
[14] WEI S, NIU M, WANG J, et al. A network pharmacology approach to discover active compounds and action mechanisms of San-Cao Granule for treatment of liver fibrosis [J]. Drug Des Devel Ther, 2016, 10: 733-743.
[15] LI S. Exploring traditional Chinese medicine by a novel therapeutic concept of network target [J]. Chin J Integr Med, 2016, 22(9): 647-652.
[16] XUE J T, HUANG N, KONG W Y, et al. Hypoglycemic bioactive components and mechanism of Puerariae Lobatae Radix by network pharmacology [J]. Chin Pharm J (中国药学杂志), 2018, 53(20): 1748-1754.
[17] RU J L. Construction and utilization of traditional Chinese medicine systems pharmacology database and analysis platform [D]. Xianyang: Northwest A&F University, 2015.
[18] XU X, ZHANG W X, HUANG C, et al. A novel chemometric method for the prediction of human oral bioavailability [J]. Int J Mol Sci, 2012, 13: 6964-6982.
[19] YAMANISHI Y, KOTERA M, KANEHISA M, et al. Drug target interaction prediction from chemical, genomic and pharmacological data in an integrated framework [J]. Bioinformatics, 2010, 26(12): i246-i254.
[20] HAN S, ZHANG W, ZHEN J. Analgesic drug in clinical application [J]. Clin Med J (临床药物治疗杂志), 2015, 13(5): 71-74.
[21] ZOU L, ZHAO X, QIU E, et al. A Meta-analysis of flurbiprofen axetil versus tramadol in postoperative analgesia effect and adverse drug reactions [J]. J Wenzhou Med Univ (温州医科大学学报), 2016, 47(3): 206-210.
[22] MALCANGIO M. GABA B receptors and pain [J]. Neuropharmacol, 2017, 136(Pt A): 102-105.
[23] ZEILHOFER H U, MÖHLER H, LIO A D. GABAergic analgesia: new insights from mutant mice and subtype-selective agonists [J]. Trends Pharmacol Sci, 2009, 30(8): 397-402.
[24] ZHU Q, SUN Y, ZHU J, et al. Antinociceptive effects of sinomenine in a rat model of neuropathic pain [J]. Sci Rep, 2014, 4: 7270.
[25] ZHOU X L, WANG Y, ZHANG C J, et al. COX-2 is required for the modulation of spinal nociceptive information related to ephrinB/EphB signaling [J]. Eur J Pain, 2015, 19(9):1277-1287.
[26] WOLKERSTORFER A, HANDLER N, BUSCHMANN H. New approaches to treating pain [J]. Bioorg Med Chem Lett, 2016, 26(4): 1103-1119.

基金

国家自然科学基金项目资助(81660602); 遵义市科技计划项目资助([2018]21)
PDF(3259 KB)

Accesses

Citation

Detail

段落导航
相关文章

/